Article 12214

Title of the article

MATHEMATICAL MODELLING OF SUPRAFULLERENES AND SUPRAFULLERANES 

Authors

Brazhe Rudol'f Aleksandrovich, Doctor of physical and mathematical sciences, professor, head of sub-department of physics, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), brazhe@ulstu.ru
Shikhmuratova Lyutsiya Reshitovna, Postgraduate student, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), levi.87@inbox.ru 

Index UDK

517.958: 530.145

Abstract

Background. Polyhedral molecules, including fullerenes, are considered as perspective materials to be used in the construction industry, mechanical engineering, hydrogen energetics, biotechnologies and medicine. The purpose of this paper is to calculation equilibrium geometrical parameters and binding energy of atoms in the so-called suprafullerenes and suprafulleranes, differing from classical fullerens and fulleranes by more complex arrangement of atoms.
Materials and methods. By means of NanoEngineer and Abinit software packages in the beginning the authors obtained geometrical parameters of a macromolecule meeting energy minima. After that, on the basis of the density functional theory (DFT) using basic functions of 6-311G set the researchers calculated its total energy and binding energy per atom.
Results. It is shown that the binding energy of suprafullerenes atoms is commensurable with that for classical C20 and C60 fullerenes, and in some of them even is higher. Suprafulleranes are characterized by smaller binding energy of their atoms and are less steady thermodynamically. Therefore the complete hydrogenation of suprafullerenes encounters certain difficulties.
Conclusions. Suprafullerenes’ diameter can exceed the diameter of the most widespread C60 fullerene 2–3 times. Respectively their volume has to exceed the volume of the latter 8–27 times. It means that suprafullerenes can be successfully used as capsules for radionuclides in selective beam therapy and other applications. 

Key words

polyhedral molecules, suprafullerenes, suprafulleranes, equilibrium geometrical parameters, beam therapy. 

Download PDF
References

1. Prinzbach H., Weller A., Landenberger P., Wahl F., Worth T., Scott L.T., Gelmont M., Olevano D., B. von Issendorf Nature. 2000, vol. 407, pp. 60–63.
2. Kroto H. W., Heatch J. R., O’Brien S. C., Curl R. F., Smalley R. E. Nature. 1985, vol. 318, p. 6042.
3. Remi G. Kurs neorganicheskoy khimii. T. I. [Course of inorganic chemistry. Volume 1].Moscow:Mir,1972,824 p.
4. Openov L. A., Elesin V. F. Phys. Let. A. 2009, vol. 373, pp.1653–1657.
5. Jursic B. S. J. mol. Structure (Theochem). 2000, vol. 507, pp. 185−192.
6. Elaton P. E., Cole T. W. J. Am. Chem. Soc. 1964, vol. 86, pp. 962−964.
7. Paquette L. A., Ternansky R. J., Balogh D. W., Kentgen G. Am. Chem. Soc. 1983, vol. 105, pp. 5446−5450.
8. Berland K., Hyldgaard P. J. Chem. Phys. 2010, vol. 132, pp. 134705-1–134705-10.
9. Vennindzher M. Modeli mnogogrannikov [Models of polyhedrons]. Moscow: Mir, 1987, 236 p.
10. Brazhe R. A., Karenin A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2011, vol. 18, no. 2, pp. 105−112.
11. Brazhe R. A. Fizika suprakristallov [Physics of supracrystals]. Ulyanovsk: UlGTU, 2012, 162 p.
12. Openov L. A., Podlivaev A. I. FTT. 2008, vol. 50, no. 6, pp. 1146−1150.
13. Maslov M. M., Openov L. A. Nauchnaya sessiya MIFI – 2010. Sbornik nauchnykh trudov. Ch. 1 [Scientific session at MFI – 2010. Proceedings. Part 1: XIII International telecommunication conference of students and young scientists]. Moscow: MIFI, 2010, pp. 157−158.
14. Davydov I. V., Podlivaev A. I., Openov L. A. FTT. 2005, vol. 47, no. 4, pp. 751-757.
15. Parasuk V., Almlof J. A. Chem. Phys. Lett. 1991, vol. 184, no. 1–3, pp. 184−187.
16. Bakowies D., Thiel W. J. Am. Chem. Soc. 1991, vol. 113, no. 10, pp. 3704 – 3714.
17. Du A. J., Pan Z. Y., Ho Y. K., Huang Z., Zhang Z. X. Phys. Rev. B. 2002, vol. 66, no. 3, p. 035405.
18. Maslov M. M., Lobanov D. A., Podlivaev A. I., Openov L. A. FTT. 2009, vol. 51, no. 3, pp. 609–612.
19. Richardson S. L., Martins J. L. Phys. Rev. B. 1998, vol. 58, no. 23, pp. 15301-1–15307-3.
20. Hedberg L., Hedberg K. K., Eaton P., Nodari N., Robbiette A. G. J. Am. Chem. Soc. 1991, vol. 113, no. 5, pp. 1514−1517.
21. Belousov V. P., Belousova I. M., Danilov V. V., Danilov O. B., Kalintsev A. G., Mak A. A. Opticheskiy zhurnal [Optical journal]. 1997, vol. 64, no. 12, pp. 3−17.
22. Tomanek D., Sshluter M. A. Phys. Rev. Lett. 1991, vol. 67, no. 17, pp. 2331−2334.
23. Grossman J. C., Mitas L., Raghachari K. Phys. Rev. Lett. 1995, vol. 75, no. 21, pp. 3870−3880.
24. Jones R. O., Seifert G. Phys. Rev. Lett. 1997, vol. 79, no. 3, pp. 443−446.
25. Hebard A. F. Annu. Rev. Mater. Sci. 1993, vol. 23, pp. 159−191.

 

Дата создания: 19.08.2014 10:40
Дата обновления: 02.09.2014 11:40